What's a Healthy Soil?

Presenter Will Brinton Ph.D. Founder, director

Faculty Associate

Prologue for the on-line version

This slide show accompanied a lecture by Dr Brinton in Asilomar, Monterey CA.

NOTES: Soil Health is a popular "new" movement gaining ground with farmers and promising renewed hope for real soil building - regardless of farming preferences and organic status.

Yet, soil health is not new, and is fully and completely an organic creation that has taken 40 years to gain a footing. The presenter will show that the science underlying health was conceived by early organic/bio-dynamic scientists in Europe. That soil health has jumped the border of organic farming is no surprise. Based on current science assessments, organic farming continues to lead conventional farming in virtually all soil health metrics.

Will Brinton

Healthy Soil is

- A world *including* roots, microbes, animals
- A complicated trait that's hard to quantify!
- The road not taken for modern ag science
- The brainchild of early organic farming
- Nature's Plan

Soil can't be

Earthworm

cana

- Worms/roots/microbes interact, react, transport
- Hard to say what comes first: what are causes vs effects!
- Plants+microbes/animals are working together to improve their habitat.

Soil Lab Report P <u>27</u> K <u>175</u> pH <u>6.5</u> Soil life ?

OLT

created atleast half

whee alth"

Photo: Woods End Labs 2014

What's the Crop's major nutrient ?

In order to produce dry matter;

Wheat – absorbs 85 lb CO2/day/acre[†]

Corn – absorbs up to 340 lb CO2/day/acre

[†] assuming ≈60 days to accumulate 50 bushels of dry wheat grain or 200 bu. corn

At 400* ppm CO₂ in air, to get this much carbon:

Wheat – "consumes" 55 acre-feet air/day⁺

- or 15 cubic acres of air per crop season

Corn – needs up to 220 acre-feet air/day⁺

- or 60 cubic acres of air per season

As per the Ideal Gas Law, at STP, 1 cubic foot of air has 0.016 g CO2 or 700 g / acre-foot

Living Soil raises the CO2 concentration in and above the soil, reducing plants dependency on free air for its photosynthesis needs

≈800

-≈1,500

≈4,000

Validation of *In Situ* Soil Pulsating-Breathing Respiration

CO2 Infiltration Ring Chamber (Doran & Brinton 1995)

2" Over soil surface CO2 Flux

Therefore, living soil biology is:

- 1. Helping meeting plants' nutrient requirement for CO₂
- 2. Sequestering AND relinquishing CO₂
- 3. Releasing available N associated with carbon
- 4. Dissolving soil minerals via carbonic acid

Nature is balancing several equations simultaneously

Activity and mass is what counts

1-5 lb/d Nutrient Release

100 lb/d CO2 Photosynthesis

2,000 lbs/acre Microbes

100 lb/d

Soil CO2

50,000 lbs/acre Organic Matter

3 forms of respiration

- Soil biological food web: consumes soil organic matter, requires O₂ and produces CO₂
- Plant root metabolism requires
 O₂ and releases CO₂
- Plant above-ground photosynthesis absorbs CO₂ and produces O₂

Notice the roots

- Root mass often similar to above-ground mass
- Roots explore up to 200ft³/plant*
 (Soil test models assume ~10ft³)
- Root length may be > 1,000 miles
- Root surface area >35 ball fields

 * Liebhardt W (2014) Moving beyond the soil test. RAFS Cambridge Press

Validating Microbial/CO2 induced natural soil mineral weathering

Soils are being constantly "mined" by microbes whose CO2 as a weak acid releases geologic nutrients into biological cycles

Source: Canadian Jrnl Soil Sci 1998

Unseen world of roots

LONG TERM STUDIES SHOW CROP ROTATION AND MANURING VITAL TO SOIL HEALTH

Earthworm Canals in Long Term Field Studies

Source: Brinton et al. (1981) Swedish 17-yr Field Plot Studies: CO2 Rates vs Earthworm Canals.

Social Insects may be your earthworms!

Validation Methods: Solvita Soil Respiration Test

Field CO₂ Respiration Research 2017

As found in Organic Growing Systems

Two long-term trials with 4-6 reps

Permanent Bed Tillage Trial Plots (since 2014) – How is soil respiration influenced by soil management?

High-Tunnel Organic (compost since 2013) *How does compost influence soil carbon mineralization changes*

Ref: Brinton, W., J. Vallotton. M. Hutton, M. Hutchinson. 2017. ASA-SSSA-CSA Tampa FL

Results: CO2-C release as influenced by organic tillage vs No-Till plots

Tillage Plots ± SD (4 -6 reps) During the Season

Ref: Brinton, W., J. Vallotton. M. Hutton, M. Hutchinson. 2017. ASA-SSSA-CSA Tampa FL This study was conducted using the field-version of the Solvita field kit with 5 replicates per treatment

Details on CO2 METHOD

Tests started within 3 hrs of sampling; all samples weighed. Solvita® CO₂-sensitive probes employed in basal mode (fresh, as-is soil), No drying or grinding Two jar sizes (¼ and 1-liter) in case very high CO2 concentration Ambient room temp during measuring: ranged 19-26°C avg. 22 °C Results quantified by Solvita DCR as CO₂-C mg kg⁻¹

= kg ha fresh weight

Ref: Brinton, W., J. Vallotton. M. Hutton, M. Hutchinson. 2017. ASA-SSSA-CSA Tampa FL

Season compost-soil effects observed with basal Solvita CO2 respiration

CO2-Emissions Per Compost Plots

Ref: Brinton, W., J. Vallotton. M. Hutton, M. Hutchinson. 2017. ASA-SSSA-CSA Tampa FL

Assessment of Organic soil health status as revealed by <u>research</u>

Source: Research Institute for Biological Husbandry, Switzerland

	Total	Microbial biomass carbon	Microbial biomass nitrogen	Total PLFA	Basal respiration	Dehydrogenase activity	Metabolic quotient	Protease activity	Urease activity
Number of studies	56 studies	42 studies	21 studies	8 studies	29 studies	17 studies	22 studies	3 studies	7 studies
Number of paired comparisons	149	100	49	22	66	40	40	7	18
Experimental field comparisons	75	54	28	11	42	18	26	2	5
Farm comparisons	74	46	21	11	24	22	14	5	13
Experimental duration in years (Mean / Median)	16.1 / 10.0	17.2/10.0	11.0/10.0	25.9/ 10.0	12.6/10.0	8.8/5.5	12.3/8.0	6.6/6.0	7.9/7.0
Coverage of climatic zones⁺	A, B, C, D	A, B, C, D	A, B, C, D	A, C, D	A, B, C, D	A, B, C, D	A, B, C, D	С	A, B, C
Coverage of continents *	6 of 6	6 of 6	5 of 6	4 of 6	6 of 6	5 of 6	6 of 6	3 of 6	4 of 6

* all except Antarctica

+ A = Tropical/mega thermal climates, B = Dry climates, C = Temperate/mesothermal climates, D = Continental/Microthermal climates, E = Polar climates

https://doi.org/10.1371/journal.pone.0180442.t001

149 paired scientific studies:

Location of Studies Used

Source: Lori et al. (FIbL) 2017 Plos One

ORGANIC FARMED SOILS HAD: 41% more biomass carbon 51% more microbial N 59% more PLFA count 74% more dehydrogenase 4% more efficient CO2 cycle 84% greater protease 32% more urease activity

Compared to first EU Soil Health Study*

• Location of Studies: 9 paired dairy farms on same soil types

* Source: <u>German Ministry of Agriculture 1977</u> Baden-Württemberg • Organic-Bio-Dynamic Farms had:

10-50% more CO₂ respiration
14% higher N-mineralization
40% more dehydrogenase enzymes
76% more urease enzymes
400% more azotobacter
390% greater earthworm counts

Soil Labs worldwide integrating Solvita biology into lab process...

Soil Lab Report							
Р	27						
К	<u>175</u>						
рН	<u>6.5</u>						
soil life 🗹							

Soil Health mostly about *context*.
Healthy soil is not a thing to be "precisely" measured.

The organic community first created the vision for soil health A broad, growing movement to "restore soil" may require the organic community to rephrase some arguments.

Carbon & Farming: A *difficult* Problem

Understanding <u>Relinquishing</u> vs <u>Sequestering</u> Carbon vs The Plight of Soil AND the Climate

SOURCE: THE ANNUAL NET FLUX OF CARBON TO THE ATMOSPHERE FROM CHANGES IN LAND USE 1850–1990 R. A. HOUGHTON, T HE WOODS HOLE RESEARCH CENTER, PO BOX 296, WOODS HOLE, MA 02543, USA

In pre industrial era, farming abuse of soils was the main contributor to global CO2 rise.

Solvita - SLAN ppm

200

100

1

Real States Lake

300

400

500

For information on Solvita tests and Soil Health: visit <u>woodsend.com/soil</u> Author's email: <u>will.brinton@woodsend.com</u>

SOIL LAB - ESTABLISHED 1974-Thank - 290-VOU!

Stand the real stands

Woods End[®]

RESOURCES:

- <u>Building your own soil</u> <u>health test system</u>
- Obtaining test kits
- Get a soil-health test
- Articles and Reprints

Slideshow © Copyright 2018 Will Brinton ALL RIGHTS RESERVED. This slide show may not be disseminated or printed without permission of the Author.

Author's email: <u>will.brinton@woodsend.com</u>; <u>William.brinton@maine.edu</u>

