

Relationship of Calcium Rate to Pectolytic Enzymes and Soft Rot Caused by Erwinia carotovera

(after Platero and Tejerina, 1976)

Calcium content (mg/g dry wt)		ivity (relative units)* Pectin transeliminas	
6.8	62	7.2	4
16.0	41	4.5	4
34.0	21	0	0

^{*0 =} no decay; 4 = Complete decay within 6 days

Relationship of B Rate to Red Spi	ider Mite Severity
-----------------------------------	--------------------

B supply (mg/l)	Mites (No/m²)	Feeding holes No./cm ²)	Tissue Cyanidin (ug/g)
0	1.8	67	2-5
0.5	1.7	60	10-18
5.0	1.2	30	
50	1.0	20	20-32
500	0.9	17	
1000	0.9	12	

Keys to Using Nutrition to Manage Disease

4. Method and Time Applied

Soil<-->Seed<-->Foliage, Side-dress<-->Band<-->Broadcast Spring<-->Fall<-->Split

Susceptibility of Plant, Favorable Environment, Virulence of Pathogen

Effect of nitrogen source and time on *Rhizoctonia* "winter-kill" of winter wheat

Time N			sharp eyespot Yield (kg/ha)
Fall	3	2.1	3036
Early s	pring 73	3.2	2640

N Treatment	Time	% Kill
NH3 + N-Serve	September	14
Urea Granuals	February	40
28% N Solution	February	60
<u>Urea</u>	April	14

Keys to Using Nutrition to Manage Disease

5. Source and Associated Ions

Gas<-->Liquid<-->Granule; Anion<-->Cation (K2SO4/KCI)

Effect of KCI on the incidence of take-all in wheat (+ NH₄-N)

	ha) % ii Spring		Grainyield (t/ha)
0	0	45	5.3
56	0	34	5.7
56	185	11	6.5

Christensen et al., Agron, J. 73: 1053-1058; 1981

Effect of copper on wheat melonosis (*Pseudomonas* cichorii). After Mahli et al, 1989

Treatment	Rate (kg Cu/h	Application a) Method	Percent disease	Grain yield (kg/ha)
Control	Nil	None	92	294
CuSO4	10	Banded	76	511
CuSO4	10	Incorporated	34	2016
CuSO4	10	Foliar spray	6	2116
Cu-Chelate	2	Foliar spray	7	2505

Keys to Using Nutrition to Manage Disease

6. Integration with other practices

Rotation, Tillage, Seed rate, Herbicide, pH, Moisture

Severe take-all of wheat following glyphosate on soybeans (left), the non-treated soybean control is right.

Less take-all of wheat in a Firm (right) than loose seed-bed (left)

Pesticide Interactions with Nutrition

- Many pesticides are mineral chelators
 - 'Immobilize' (or enhance) critical mineral co-factor for enzymes
 Organic phosphates, amino-phosphonates, dithiocarbamates, etc.
- Herbicides specific ion or general immobilization

Cu examples: Puma Gold (fenoxyprop); Tordon General: Glyphosate, Glufosinate Others: Zn, Fe, Co, Ni, B, etc.

Environmentally influenced (activity, stability, persistence)
 pH, moisture, temperature, microbial activity, soil type

Compensate for Reduced Availability if using the Tool!

Enzyme	-Fold change
Taurine ATP-bindingsystem	11.07
Glutamate synthase	6.06
Aminomethyl transferase	5.58
Tyrosine aminotransferase	4.36
Thioredoxin reductase	4.20
NADH dehydroenase	4.04
Riboflavin synthase	3.57
3-phosphoadenosine-5-phosphosulfte reductase	3.75
Membrane bound ATP synthase	3.67
Acetolactate synthase	3.59
Pyridine nucleotide transhydrogenase	3.50
Shikimate kinase	3.36
3-deoxy-D-arabino-heptulosonate-7-phosphatase	3.38
Sulfite reductase	3.19
RNAase	3.18
Glutathione S-transferase	3.04
D-amino acid dehydrogenase	3.00
Glucose-6-phosphate dehydrogenase	2.67
ATP sulfurulase	2.65
5-enolpyruvylshikimate-3-phosphate synthetase (EPSPS)	2.62

Reduced Nutrient Efficiency of Isogenic RR Soybeans

Tissue:	Mn	<u>Zn</u>
Isoline	%	%
Normal	100	100

Roundup Ready® 83 53

RR + glyphosate 76 45

Copper, iron, and other essential nutrients were also lower in the RR isoline and reduced further by glyphosate!

After Zobiole et al., 2008, 2009

Some Plant Pathogens Increased by Glyphosate

Corynespora cassicola
Fusarium spp.

Phytophthora spp.

<u>Pythium</u> spp.

Rhizoctonia solan

Thielaviopsis bassicola Xylella fastidiosa Myrothecium verucaria F. solani f.sp. Pisi

Gaeumannomyces graminis Magnaporthe oryzae

("Emerging" and "reemerging diseases")

Fungal Mn oxidation in soil (increased virulence)

Abiotic: Nutrient deficiency diseases; bark cracking, mouse ear, 'witches brooms', drought stress, chill damage

Nutrient	Alfalfa	Soy Beans**
Nitrogen	13 %	40 %
Phosphorus	15 %	
Potassium	46 %	16 %
Calcium	17 %	26 %
Magnesium	26 %	30 %
Sulfur	52 %	
Boron	18 %	
Copper	20 %	27 %
Iron	49 %	18 %
Manganese	31 %	48 %
Zinc	18 %	30 %

Corynespora Root Rot An extensive dark brown to black rotting of small lateral roots Generally considered a root "nibbler" Especially severe when glyphosate is applied to near-by weeds Especially severe when glyphosate is applied to the plant Long, multiseptate spores Control Inoculated + glyphosate Corynespora cassiicola

Indiana, 2010					
RR Corn Hybrid					
Herbicide	6733HXR	6179VT3	5442VT3	5716A3	
Surestart (11")	266*	216	223	219	
Cadet (V6)	227	219	219	213	
Laudis (V6)	224	218	214	214	
Integrity (pre-E	231	217	215	204	
Glyphosate (V6)	212	207	206	210	
Steadfast (V6)	207	204	201	196	
Status (V6)	187	195	193	192	

Special Considerations in Fertilizing RR Crops

Two factors: 1) Chemical; 2) gene

- 1. Providing nutrient availability for yield and quality
 Compensate for reduced plant efficiency
 Compensate for reduced soil availability
- 2. Detoxifying residual glyphosate
 In meristematic root, stem, flower tissues, etc.
 In soil [Ca, Co, Cu, Mg, Mn, Ni, Zn]

[Timing and formulation are important]

3. Restoring soil microbial activity

Nutrient related (N-fixation, Fe, Mn, Ni, S, Zn, etc.)
Disease control related (nutrition, pathogen antagonists, etc.)
Biological amendment (N-fixers, PGPRs, etc.)

4. Judicious use of glyphosate

Yield Response of Roundup Ready® Soybeans to Micronutrients

				s Wisconsin
		Ticia (be	.,	
Untreated	46	24	77	33
Glyphosate only	57	33	65	8
Glyphosate +	75	56	78	19
Micronutrient	Mn	Mn	Mn	Fe

Effect of Glyphosate on Roundup Ready® Corn

Colorado State University, 2007

Mike Bartolo, Sr. Res. Scientist

% grain Yield % of Treatment moisture (bu/a) control

Untreated* 15.6 234 a 100

Glyphosate** 15.6 195 d 83

Glyphosate 15.6 221 b 94 + Zn, Mn

Glyphosate 15.6 208 c 89 + Mn, Zn, Fe, B

*Hand weeded, **1 lb a.i. + 1 pt AMS per acre Notes: UTC = genetic potential (with RR gene) Glyphosate reduces genetic potential 39 bu/a Application of high Mn & Zn recovers some genetic potential, lower Mn & Zn recovers less

Response of Roundup Ready® Corn to Zn & Mn,

2007*

NDSU Carrington

Treatment Yield (bu/a)

Glyphosate control 144

Zn seed Treatment 156

Foliar applied Zn 158

Foliar applied Zn+Mn 173

Seed + Foliar Zn 175

Soil granular Zn sulfate 167

* All treatments received glyphosate

An Epidemic of Roundup Resistant Weeds

REMEMBER

- 1. Nutrition is an integral part of efficient crop production
 A. Crop quality and quantity
 B. Disease control
- **2.** Changes in the nutrient related interactions of the plant environment and pathogen affects disease
 - A. Increase plant resistance and defense response
 - B. Make the environment less conducive for pathogenesis
 - C. Reduce virulence or survival of the pathogen
- **3.** Nutrient rate, form, time, source and method of application are important principles for disease control
- 4. Integrate nutrition and cultural practices for optimum yield, disease control, over-all plant health and nutrient quality

Failed Promises of Touted Benefits

- ✓ Higher yields
- **✓** Fewer pesticides
- ✓ Less post-harvest loss
- **✓** Improved N-fixation
- **✓** Drought and salt tolerance
- **✓** Increased photosynthesis
- **✓** Greater root growth & function
- **✓** Disease resistance
- ✓ Lower risks (economic)
- ✓ Lower cost
- **✓** Greater safety
- ✓ Simpler management resistant weeds & pests

RETRAYAL OF THE PUBLIC TRUST