Soil Testing

- To monitor long-term changes and trends in your soil
- To determine if there are deficiencies and/or toxicities in the soil that need to be addressed
- Full soil tests done by laboratories
 - These are generally complete analyses
- Quick soil tests
 - These are specific tests to help make decisions on fertilization – the most common being the soil nitrate test

Soil Testing

- It is important to take a good sample
- Take from multiple locations
- Be aware of differences in soil (texture, etc)
- Take a representative sample from the top foot (shovel slice, soil probe, etc)
- Be careful to not over represent soil from the top few inches as it is higher in organic matter and fertility
- Mix thoroughly

How quickly do soil test values change?

- Rapidly (within weeks) NO₃-N
- Moderately (within a year) pH, salinity
- Slowly (> a year) most fertility parameters

Bottom line:

 It is a good idea to do a full fertility test every 2-3 years, unless amendments are used

Understanding Soil Test Analyses

٢			(hereal)	Uniter	Phos	phonus	Potassium	Magnesium	Calcium	Sedium	P	H .	Hydrogen	Cation			PERCENT		
I	SAURI E	148	College	- maner	PI	P1 Natico ₁ -P		lin.		No.			D	Exchange	(CATION SAT	URATION (COMPUTED)		
I	D	NURBER			(Vieak Erzy)	OleenMethod	<u></u> .	ppm ppm ppm	<u> </u>		Sol	Buffer	н	Capacity	к	Ma	Ga		No.
I			% Rating	ENR Bolk	DB.M	ppm P	ppm		ppm	ppm	pH	Index	meg189g	C.E.C.	5	5	5	5	8
ľ	130-1	55931	4.0H	110	23M	14**	110L	460M	992VL	104L	4.7	6.2	9.7	19.1	1.5	19.8	25.9	50.5	2.4
l	130-2	55932	1.5L	60	27H	6**	41VL	569M	1154VL	185M	4.6	5.9	13.3	24.7	0.4	19.0	23.3	54.0	3.3
l	12-1	55933	3.5M	100	12L	11**	64L	471VH	841VL	87L	5.2	6.5	4.5	13.1	1.2	29.5	31.9	34.5	2.9
l	12-2	55934	2.8M	86	8VL	9**	29L	553VH	665VL	89M	5.3	6.6	3.7	12.1	0.6	37.7	27.5	31.0	3.2
l																			
L																			

** NaHCO3-P unreliable at this soil pH

I		Nitrogen	Sulfur	Zino	Manganese	hon	Capper	Boran	Excess	Soluble	Chloride			PARTIC	LE SIZE ANALYSIS
l	NUMBER	NO ₂ N	\$0,5	Zn	Ma	fe	Ca	8	Line	Salta	a	SAND	SLT	CLAI	SOM TEXTURE
l		ppm	ppm	ppm	ppm	ppm	ppm	ppm	Rating	mmhos/cm	ppm	- N			
	130-1	5L	5L	0.3VL	3M	53VH	0.2VL	0.1VL	L	0.3L					
	130-2	3VL	41VH	0.1VL	TVL	14M	0.2VL	0.1VL	L.	0.6L					
	12-1	2VL	5L	0.1VL	2L	50VH	0.1VL	0.3VL	L	0.2VL					
	12-2	2VL	4L	0.1VL	1VL	53VH	0.1VL	0.2VL	L	0.1VL					
l															

* CODE TO RATING: VERY LOW (VL), LOW (L), MEDIUM (M), HIGH (H), AND VERY HIGH (H).

. ENR - ESTIMATED NITROGEN RELEASE

MULTIPLY THE RESULTS IN ppm BY 2 TO CONVERT TO LSS. PER ACRE OF THE ELEMENTAL FORM

MULTIPLY THE RESULTS IN ppm BY 46 TO CONVERT TO LSS. PER AGRE P(O)

mm INULTIPLY THE RESULTS IN port BY 2.4 TO CONVERT TO LBS. PER ACRE K₂O

MOST SOLS WEIGH TWO (2) MILLION POUNDS (DRY WEIGHT) FOR AN ACRE OF SOL 6-0.9 INCHES DEEP

This report applies only to the sample(s) tested. Samples are retained a maximum

Mattin

Mike Buttess, CPAq

A & L WESTERN LABORATORIES, INC.

of thirty days after testing

PISTACHIO SOIL ANALYSIS

Characteristics of some California soils:

		Organic matter	Total N	Estimated N release	NH ₄ -N	NO ₃ -N	Phosphor	rus (PPM)
Sample ID	pН	(%)	(%)	(lb/acre)	(PPM)	(PPM)	Bray	Olsen
Smith Block 7	7.1	1.2	0.06	36	2	3	3	8
Jones Block 2-N	7.7	0.7	0.04	21	1	8	31	23
Miller Block 4	6.0	0.8	0.04	24	3	22	54	32
Ruiz Block 1W	6,8	1.6	0.09	48	1	16	170	114

Sacramento Valley	Sample ID	Soil texture
San Joaquin Valley	Smith Block 7	loam
Santa Maria Vallav	Jones Block 2-N	silty clay loam
	Miller Block 4	sandy loam
Salinas Valley	Ruiz Block 1W	clav loam

Soil pH:

		Organic matter	Total N	Estimated N release	NH ₄ -N	NO ₃ -N	Phospho	rus (PPM)
Sample ID	pН	(%)	(%)	(lb/acre)	(PPM)	(PPM)	Bray	Olsen
Smith Block 7	7.1	1.2	0.06	36	2	3	3	8
Jones Block 2-N	7.7	0.7	0.04	21	1	8	31	23
Miller Block 4	6.0	0.8	0.04	24	3	22	54	32
Ruiz Block 1W	6.8	1.6	0.09	48	1	16	170	114

Saturated paste extract

- Many vegetable crops grow well over a range of pH's
- Processing tomatoes for instance, do well from 6.3 to 8.0
- At low pH's (<4.5) too much manganese becomes available and can be toxic

Adjusting Soil pH

- Most crops can handle a wide range in soil pH's
- Nitrogen fertilization tends to reduce soil pH
- Brassica's need soil pH >7.3 to reduce issues with club root
- If you need to increase the pH, lime is used, but other materials such as wood ashes will increase the soil pH
- Also, bicarbonate in irrigation water raises soil pH
- Elemental sulfur is used to lower soil pH

Raising soil pH with lime (calcium carbonate)

Results affected by soil texture and the liming material

Desired pH change	Pound	Pounds of CaCO ₃ equivalent per acre							
in 6" depth	sand	sandy Ioam	loam	silt Ioam	clay loam				
4.0 to 6.5	2,600	5,000	7,000	8,400	10,000				
4.5 to 6.5	2,200	4,200	5,800	7,000	8,400				
5.0 to 6.5	1,800	3,400	4,600	5,600	6,600				
5.5 to 6.5	1,200	2,600	3,400	4,000	4,600				
6.0 to 6.5	600	1,400	1,800	2,200	2,400				

Soil organic matter (measured combustion or digestion):

		Organic		Estimated				
		matter	Total N	N release	NH ₄ -N	NO ₃ -N	Phosphor	rus (PPM)
Sample ID	pН	(%)	(%)	(lb/acre)	(PPM)	(PPM)	Bray	Olsen
Smith Block 7	7.1	1.2	0.06	36	2	3	3	8
Jones Block 2-N	7.7	0.7	0.04	21	1	8	31	23
Miller Block 4	6.0	0.8	0.04	24	3	22	54	32
Ruiz Block 1W	6.8	1.6	0.09	48	1	16	170	114

Selected Salinas Valley Soils

Soil Type	% Organic Matter	Percent Clay		
Fine Sandy Loam	0.95	12		
Sandy Loam	1.15	18		
Loam	1.80	25		
Clay loam	2.37	36		
Silt loam	2.41	47		

Soil organic matter ≈ 58% C; ≈ 7% N; C:N ratio ≈ 10:1 to 12:1

		Organic matter	Total N	Estimated N release	NH ₄ -N	NO ₃ -N	Phospho	rus (PPM)
Sample ID	pН	(%)	(%)	(lb/acre)	(PPM)	(PPM)	Bray	Olsen
Smith Block 7	7.1	1.2	0.06	36	2	3	3	8
Jones Block 2-N	7.7	0.7	0.04	21	1	8	31	23
Miller Block 4	6.0	0.8	0.04	24	3	22	54	32
Ruiz Block 1W	6.8	1.6	0.09	48	1	16	170	114

Salinas Valley Soils Comparison

Soil Type	Management	Total Soil N %
Clay Loam	Organic	0.17
Clay Loam	Conventional	0.14
Loam	Organic	0.14
Loam	Conventional	0.11
Fine Sandy Loam	Organic	0.12
Fine Sandy Loam	Conventional	0.06

Soil N mineralization potential:

		Organic matter	Total N	Estimated N release	NH4-N	NO ₃ -N	Phosphor	rus (PPM)
Sample ID	pН	(%)	(%)	(lb/acre)	(PPM)	(PPM)	Bray	Olsen
Smith Block 7	7.1	1.2	0.06	36	2	3	3	8
Jones Block 2-N	7.7	0.7	0.04	21	1	8	31	23
Miller Block 4	6.0	0.8	0.04	24	3	22	54	32
Ruiz Block 1W	6.8	1.6	0.09	48	1	16	170	114

Soil building practices that increase the levels of soil organic matter increase the amount of N available to crops by increasing the total amount of N available for mineralization

Some labs will provide an 'Estimated N release'

- It is not measured, but calculated from either organic matter or soil total N
- Different labs may use different formulas for this calculation

N Release (lbs N/A/day) in Salinas

From Patricia Lazicki

Soil mineral N (nitrate and ammonium):

		Organic		Estimated				
		matter	Total N	N release	NH ₄ -N	NO ₃ -N	Phosphor	rus (PPM)
Sample ID	pН	(%)	(%)	(lb/acre)	(PPM)	(PPM)	Bray	Olsen
Smith Block 7	7.1	1.2	0.06	36	2	3	3	8
Jones Block 2-N	7.7	0.7	0.04	21	1	8	31	23
Miller Block 4	6.0	0.8	0.04	24	3	22	54	32
Ruiz Block 1W	6.8	1.6	0.09	48	1	16	170	114

- NO₃-N is the predominate form of N in soil
- NH₄-N levels are low in the summer (1-2 ppm)
- NO₃-N can change substantially over time, based on soil temperature, irrigation or rainfall amounts, soil texture
- Given that nitrate levels can change quickly it is best to test as close to when you want to fertilize
- The nitrate quick test is a good method to get rapidly get a nitrate value from which you can make fertilizer decisions
- It is widely used by conventional growers, and is less used by organic growers

Making a Fertilizer Decision Based on Nitrogen Release from Soil Organic Matter/Prior Crop Residues

- Soil building practices can help the soil to release good amounts of nitrogen for crops
- Long-season crops can benefit from the cumulative amount of N released from the soil
- Short-season, high-nitrogen demanding leafy green vegetables are more difficult, and measuring the pool of residual soil nitrate may be a better indication of available nitrogen for crop growth

The readings on the test strips are converted (e.g. \div 2) to ppm nitrate-N on a dry weight basis depending on the moisture content and texture of the soil

We mostly operate in the 10 to 50 ppm range on the strips.

Spinach Nitrogen Fertility Trial Clay Loam Soil 4-4-2 Fertilizer

Planting	Topdress	Total	Initial NO ₃ -N	Fresh wt
lbs N/A	lbs N/A	lbs N/A		tons/A
80	80	160	21	6.9
40	80	120	21	6.9
0	0	0	21	6.4

Spinach Nitrogen Fertility Trial Sandy Ioam soil 4-4-2 Fertilizer

Planting	Topdress	Total	Initial NO ₃ -N	Fresh wt
lbs N/A	lbs N/A	lbs N/A		tons/A
160	0	160	27	7.7
120	0	120	27	6.8
0	120	120	27	5.7

Nitrogen Content of Various Organic Fertilizers

Fertilizer	Source
Dry	
2.5	Poultry
3 - 4	Seed meals
4	Poultry Manure + Meat and Bone Meals
12 - 13	Feather and blood meals
8	Meat and Bone
9 - 12	Guanos
Liquid	
2 - 5	Fish waste
14	Hydrolyzed soybean

Soil phosphorus:

Sample ID	рН	Organic matter (%)	Total N (%)	Estimated N release (lb/acre)	NH ₄ -N (PPM)	NO ₃ -N (PPM)	Phosphor Bray	rus (PPM) Olsen
Smith Block 7	7.1	1.2	0.06	36	2	3	3	8
Jones Block 2-N	7.7	0.7	0.04	21	1	8	31	23
Miller Block 4	6.0	0.8	0.04	24	3	22	54	32
Ruiz Block 1W	6.8	1.6	0.09	48	1	16	170	114

The soil phosphorus test is good for diagnosing deficiency in the soil; it is also good for monitoring longterm trends in the soil (whether it is increasing, due to manure and compost use or decreasing and becoming a problem)

Common Soil Tests:

Olsen (bicarbonate) extraction:

for soil > pH 6.0

Bray (weak acid) extraction:

for soils < pH 6.0</p>

Phosphorus Soil Test Values and Yield Response to Phosphorus Fertilization

Bicarbonate-extractable soil P*

Сгор	Yield improvement likely	Possible yield Improvement**	Yield improvement unlikely
Lettuce/Celery	< 40	40 - 60	> 60
Other Cool Season Vegetables	< 25	25 - 35	> 35
Warm season vegetables	< 15	15 - 25	> 25

* For Bray extraction method multiply values by 2.5
** Particularly in cold soil temperatures

Soil Tests are an Index of the Availability of Phosphorus

- Available phosphorus is in an equilibrium with insoluble minerals and organic matter
- The Olsen and Bray tests give an indication of plantavailable phosphorus
- They do not give a direct measurement of actual pounds per acre of phosphorus that is available

How available is P in animal manures and composts?

	% P in							
Material	organic form	phosphate form						
Feedlot manure	25	75						
Composted manure	16	84						
Dairy manure	25	75						
Poultry litter	10	90						
Swine manure	9	91						

The Phosphorus in manure (fresh or composted) is equal in availability to synthetic fertilizer

Rock phosphate and bone meal are slowly available in acid soils and are unavailable in alkaline soils

Organic Fertilizer Trials Salinas Valley Phosphate released from 4-4-2 Fertilizer

Given soil pH's in these evaluations (7.3-8.2), the phosphorus in 4-4-2 that comes from bone meal, is not available to the crop and remains in the soil as an insoluble mineral

Exchangeable soil cations:

	Excha	ngeable o	cations (PPM)	Pe	ercent ca	ntion sa	turatio	on	Cation exchange capacity
Sample ID	K	Ca	Mg	Na	K	Ca	Mg	Na	Η	(meq/100g)
Smith Block 7	70	1147	992	272	1.2	37.3	53.8	7.7	0.0	15.4
Jones Block 2-N	331	4325	438	638	2.9	74.9	12.6	9.6	0.0	28.9
Miller Block 4	48	878	187	67	1.6	58.6	20.8	3.9	15.0	7.5
Ruiz Block 1W	416	2826	436	60	5.4	71.8	18.5	1.3	3.0	19.7

10:1 ratio of solution to soil

Ammonium acetate (NH₄Oac) extraction:
 1.0 N NH₄⁺ displaces cations from exchange sites

Soil Potassium Dynamics

- Potassium is often taken up by many vegetables in greater quantities than nitrogen
- On many farms more potassium is taken off that is added
- Potassium values in fertilizers is reported at K₂0 (83% actual potassium)

- Mined minerals:
 - Potassium sulfate (40% actual potassium), potassium chloride (17%)
 - Greensand (1- 5%) low solubility
- Wood ash (4%)
- Seaweed (up to 2%)
- Compost (depending on feedstock, generally no more than 2%)
- Manures
 - Chicken (2.5%)
 - Cow (15-20%)

Organic Fertilizer Trials Salinas Valley Potassium released from 4-4-2 Fertilizer

Potassium Nutrition

- Issues with potassium result from <u>low levels</u> of potassium in the soil
- Also, <u>'fixation</u>' results from vermiculitic (2:1) minerals can trap K ions in interlayer site

Potassium deficiency on peppers

Potassium crop nutrition

- Potassium is taken up by root interception
- Factors that reduce rooting or the amount of soil that the roots explore affect potassium nutrition
- For instance, in the early 1990's when peppers were being transitioned to drip irrigation, potassium deficiency began to show up in the Gilroy area
- Also, nematode issues can result in potassium deficiency symptoms on the plant

	Exchangeable K (ppm)						
Сгор	crop response likely	response possible	response unlikely				
celery	< 150	150-200	> 200				
other cool-season vegetables	<100	100-150	>150				
potato, tomato, pepper	<150	150-200	> 200				
cucurbits	< 80	80-120	> 120				

Exchangeable soil cations:

	Excha	ngeable o	cations (PPM)	Pe	ercent ca	ntion sa	turatio	on	Cation exchange capacity
Sample ID	K	Ca	Mg	Na	K	Ca	Mg	Na	Η	(meq/100g)
Smith Block 7	70	1147	992	272	1.2	37.3	53.8	7.7	0.0	15.4
Jones Block 2-N	331	4325	438	638	2.9	74.9	12.6	9.6	0.0	28.9
Miller Block 4	48	878	187	67	1.6	58.6	20.8	3.9	15.0	7.5
Ruiz Block 1W	416	2826	436	60	5.4	71.8	18.5	1.3	3.0	19.7

The cations are released to the soil solution from the negative charges on clay, organic matter and soil colloids

They are in an equilibrium with these sources

Many proponents of 'ideal' soil cation ratios:

- ≈ 10% H
- 60-75% Ca
- 10-20% Mg
- 2-5% K
- 1-5% Na
- In reality:
 - high plant productivity is possible with a wide range of cation ratios (look at parts of the Sacramento Valley – around Davis)
 - significantly modifying cation ratios in soil is usually prohibitively expensive

Exchangeable soil cations:

	Excha	ngeable (cations (PPM)	Pe	ercent ca	ation sa	turatio	on	Cation exchange capacity
Sample ID	K	Ca	Mg	Na	K	Ca	Mg	Na	Η	(meq/100g)
Smith Block 7	70	1147	992	272	1.2	37.3	53.8	7.7	0.0	15.4
Jones Block 2-N	331	4325	438	638	2.9	74.9	12.6	9.6	0.0	28.9
Miller Block 4	48	878	187	67	1.6	58.6	20.8	3.9	15.0	7.5
Ruiz Block 1W	416	2826	436	60	5.4	71.8	18.5	1.3	3.0	19.7

- In California soils, calcium normally dominates the percent of cations
- Calcium deficiency is rare and may only be seen very sandy soils or highly acidic soils
- The Smith, block 7 is from the Sacramento Valley and the magnesium is higher in relation to calcium (soil formed from serpentine rocks)
- This has not affected the yield of crops but has affected quality:

Tomatoes have more color defects and cantaloupes tend to be softer

Yellow Shoulder

Soil Ca and Mg supply nearly always *much* greater than crop requirement

	Exchangeable cations (PPM)										
Sample ID	K	Ca	Mg	Na							
Smith Block 7	70	1147	992	272							
Jones Block 2-N	331	4325	438	638							
Miller Block 4	48	878	187	67							
Ruiz Block 1W	416	2826	436	60							

Even assuming only half of exchangeable cations are plant-available, soil Ca and Mg supply is typically high

Actual crop requirements seldom exceed 150 lb Ca and 50 lb Mg per acre

There are things to consider regarding soil cation ratios:

 Low Ca : Mg ratio can cause soil structural problems: hard setting, low water infiltration

 Extreme cases of Ca:Mg imbalance result in serpentine soils in wildland where only specific plants are adapted and can grow

Physiological/Weather Induced Calcium Deficiency

Cabbage

Cation exchange capacity (CEC):

	Excha	ngeable (cations (PPM)	Pe	ercent ca	ntion sa	turatio	on	Cation exchange capacity
Sample ID	K	Ca	Mg	Na	K	Ca	Mg	Na	Η	(meq/100g)
Smith Block 7	70	1147	992	272	1.2	37.3	53.8	7.7	0.0	15.4
Jones Block 2-N	331	4325	438	638	2.9	74.9	12.6	9.6	0.0	28.9
Miller Block 4	48	878	187	67	1.6	58.6	20.8	3.9	15.0	7.5
Ruiz Block 1W	416	2826	436	60	5.4	71.8	18.5	1.3	3.0	19.7

- The CEC is a sum of the cations*. It is an indication of the soil texture and the amount of organic matter.
- This is an interesting indicator to see if it increases as organic matter increases in your soil building process

Sample ID	Soil texture
Smith Block 7	loam
Jones Block 2-N	silty clay loam
Miller Block 4	sandy loam
Ruiz Block 1W	clay loam

Sulfur

- Sulfur is abundant in California soils
- It comes from mineralization from organic matter, atmospheric deposition, in fertilizers, in gypsum and in irrigation water
- It is important to know how much sulfate (SO₄-S) is in the irrigation water to better understand how much sulfur is available to the crop

Soil salinity:

Sample ID	Soluble salts (dS/m)	Solubl Ca	e cations (Mg	(meq/liter) Na	Sodium adsorption ratio (SAR)	Chloride (PPM)	Boron (PPM)
Smith Block 7	0.3	1.0	1.5	5.9	5.3	42	0.2
Jones Block 2-N	1.5	26.7	6.4	17.4	4.3	74	2.5
Miller Block 7	3.5	22.6	13.0	7.8	1.8	67	0.5
Ruiz Block 1W	1.4	7.8	3.4	3.6	1.5	28	0.3

'Saturated paste extract'

Filtered extract

Measurement is Electrical Conductivity (EC)

conductivity is proportional to the concentration of ions

Constituents of salinity

Cations:

Ca²⁺ Mg²⁺ Na⁺ (toxic ion) K⁺ Anions: Cl^{-} (toxic ion) $SO_4^{2^{-}}$ $CO_3^{2^{-}}$ HCO_3^{-} NO_3^{-}

pH Alkalinity: CO₃⁻⁻ + HCO₃⁻ Specific Ion Toxicity: Na, Cl, Boron

Osmotic Effect of Salts

Stunting is the first symptom of salinity

Specific Ion Toxicity

Average Rootzone Salinity (ECe)

Maas and Grattan, 1999

from Steve Grattan, UC Davis

Low Leaching Fraction under Drip in Strawberry

High Leaching Fraction under Drip in Strawberry

Soil salinity:

	Soluble salts	Solubl	e cations ((meq/liter)	Sodium adsorption	Chloride	Boron
Sample ID	(dS/m)	Ca	Mg	Na	ratio (SAR)	(PPM)	(PPM)
Smith Block 7	0.3	1.0	1.5	5.9	5.3	42	0.2
Jones Block 2-N	1.5	26.7	6.4	17.4	4.3	74	2.5
Miller Block 7	3.5	22.6	13.0	7.8	1.8	67	0.5
Ruiz Block 1W	1.4	7.8	3.4	3.6	1.5	28	0.3

ы

:-

'Saturated paste extract'

Source: ALP testing program

Soluble cations:

	Soluble salts	Solubl	e cations ((meq/liter)	Sodium adsorption	Chloride	Boron
Sample ID	(dS/m)	Ca	Mg	Na	ratio (SAR)	(PPM)	(PPM)
Smith Block 7	0.3	1.0	1.5	5.9	5.3	42	0.2
Jones Block 2-N	1.5	26.7	6.4	17.4	4.3	74	2.5
Miller Block 7	3.5	22.6	13.0	7.8	1.8	67	0.5
Ruiz Block 1W	1.4	7.8	3.4	3.6	1.5	28	0.3

Values differ in both magnitude and ratio from exchangeable cations because

- extracts are different
 (deionized water vs. 1 M NH₄Oac)
- proportions are different
- units are different

Sodium adsorption ratio (SAR):

	Soluble salts	Solubl	e cations ((meq/liter)	Sodium adsorption	Chloride	Boron
Sample ID	(dS/m)	Ca	Mg	Na	ratio (SAR)	(PPM)	(PPM)
Smith Block 7	0.3	1.0	1.5	5.9	5.3	42	0.2
Jones Block 2-N	1.5	26.7	6.4	17.4	4.3	74	2.5
Miller Block 7	3.5	22.6	13.0	7.8	1.8	67	0.5
Ruiz Block 1W	1.4	7.8	3.4	3.6	1.5	28	0.3

meq Na

SAR = $\sqrt{(\text{meq Ca} + \text{meq Mg})/2}$

The sodium absorption ratio measures if the adverse effect of sodium on water infiltration and aeration in the soil are mitigated by the presence of calcium and magnesium in the soil. When the SAR ratio increases to 12 – 15, serious physical properties arise in the soil and plants have trouble absorbing water.

Saturated paste chloride:

	Soluble salts	Solubl	e cations ((meq/liter)	Sodium adsorption	Chloride	Boron
Sample ID	(dS/m)	Ca	Mg	Na	ratio (SAR)	(PPM)	(PPM)
Smith Block 7	0.3	1.0	1.5	5.9	5.3	42	0.2
Jones Block 2-N	1.5	26.7	6.4	17.4	4.3	74	2.5
Miller Block 7	3.5	22.6	13.0	7.8	1.8	67	0.5
Ruiz Block 1W	1.4	7.8	3.4	3.6	1.5	28	0.3

PPM Cl may be reported as meq/liter: 35.5 PPM = 1.0 meq/liter

ppm	meq/liter	Comment
< 70	< 2.0	Generally safe for all plants
70 - 140	2.0 – 3.9	Sensitive plants show injury (beans, onion, lettuce, carrot)
141 - 350	3.9 – 9.8	Moderately tolerant plants show injury (potato, alfalfa, squash)
> 350	> 9.8	Severe problems (sugar beets, barley)

Saturated paste boron:

	Soluble salts	Solubl	e cations ((meq/liter)	Sodium adsorption	Chloride	Boron
Sample ID	(dS/m)	Ca	Mg	Na	ratio (SAR)	(PPM)	(PPM)
Smith Block 7	0.3	1.0	1.5	5.9	5.3	42	0.2
Jones Block 2-N	1.5	26.7	6.4	17.4	4.3	74	2.5
Miller Block 7	3.5	22.6	13.0	7.8	1.8	67	0.5
Ruiz Block 1W	1.4	7.8	3.4	3.6	1.5	28	0.3

- Boron deficiency in California is unusual
- Boron toxicity occurs in certain areas (e.g. some parts of San Benito County)
- Boron content of the water needs to be evaluated to see if it is contributing to the issue
- saturated paste B is most suited for toxicity evaluation

DTPA extractable micronutrients:

	D	OTPA micro	Soil text	ure (% by	weight)		
Sample ID	Zinc (Zn)	Iron (Fe)	Manganese (Mn)	Copper (Cu)	sand	silt	clav
Smith Block 7	0.1	9.2	5.4	0.2	48	37	15
Jones Block 2-N	1.8	1.4	1.4	0.6	20	51	29
Miller Block 4	1.8	15.0	5.7	0.6	65	26	9
Ruiz Block 1W	2.0	15.4	13.4	0.9	31	35	34

- DTPA (diethylenetriaminepentaacetic acid) is a chelating agent
- These elements exist in many chemical compounds in soil, of varying solubility
- The extractant solution and method are structured to extract micronutrients likely to be plant-available

Interpreting soil micronutrient levels

Critical ranges for soil DTPA copper, iron, manganese and zinc:

	PPM	Deficiency likely to occur
Copper	0.8-1.2	Organic soils, sands
Iron	5-15	High soil pH, very high Zn and Mn; carbonate in irrigation water
Manganese	2-10	High soil pH
Zinc	0.7-1.5	High soil pH, sandy/low OM (cut areas), very high available P in soil

Why do commercial testing labs sometimes give different results for the same soil sample?

- labs may use different analytical techniques
- labs may report results in different units

Electronic resource:

Converting units on soil analysis reports:

To convert column 1			To convert column 2 into column 1 multiply
column 1 by	Column 1	Column 2	column 2 by
	PPM to/fi	rom meq/100g :	
390	PPM K	meq K/100g	390
200	PPM Ca	meq Ca/100g	200
120	PPM Mg	meq Mg/100g	120
230	PPM Na	meq Na/100g	230
	PPM to/f	rom meq/liter :	
39	PPM K	meq K/liter	39
20	PPM Ca	meq Ca/liter	20
12	PPM Mg	meq Mg/liter	12
23	PPM Na	meq Na/liter	23
35.5	PPM Cl	meq Na/liter	35.5
	Concentratio	n to/from lb/acre ^x :	
2	lb/acre (6" depth)	PPM (any element)	2
4	lb/acre foot	PPM (any element)	4

Why do commercial testing labs sometimes give different results for the same soil sample?

there is inherent variability in each test procedure

	Median absolute deviation
рН	2%
E.C.	15%
'soluble' cations	20%
Olsen or Bray P	15%
Exchangeable cations	10%
DTPA micronutrients	15%
NO ₃ -N	10%
Organic matter	10%

NAPT program

Why do commercial testing labs sometimes give different results for the same soil sample?

Iab accuracy may differ

Agricultural Laboratory Proficiency Program

Organic Soil Fertility Short-Course February 12, 2019

UNIVERISTY OF CALIFORNIA

Organic Soil Fertility for Vegetables and Strawberries

University of California Short Course Tuesday, February 12, 2019 - 8 AM - 4:30 PM Agricultural Center Conference Room, Salinas, CA

This short course will focus on the practical aspects of organic soil fertility management for fast-maturing leafy green vegetables and long-season strawberry production .

TOPICS covered include - understanding the contribution of the various sources of nitrogen for crop production including mineralization from soil organic matter, release of inorganic nitrogen from organic fertilizers and composts, and the contribution of prior crop residues, cover crops, and irrigation water.

The focus will be on nutrient management in cool season vegetables grown in multiple rotations, as well as strawberries grown in a year-long production cycle. The content will be geared toward commercial-scale production.

Thank You for Your Attention

